Axiom Space private astronaut missions support breakthroughs in space, bringing benefits to every human, everywhere.
The Italian company Mental Economy has developed a training protocol for optimal mental performance "for all those who employ high neural energies in highly stressful and competitive contexts" - athletes, racecar drivers, special forces military staff, and others. Mental Economy Training™(MET) is the technique developed to enhance "neural efficiency" (or the ability for high mental performance with low energy expenditure). The goal of this project is to investigate whether specific skills and cognitive abilities (concentration, focused attention, reactivity, stress management, memory, and others) are affected by spaceflight and how MET™ could be implemented for future crew.
Spaceflight can be a stressful experience for the human body to adapt to changes in microgravity, such as physical demands, nutritional changes, and lack of sleep. The physiological changes can be monitored by profiling the "'omics" of the body — the changes in gene expression (genomics), protein expression (proteomics) or metabolites (metabolomics). A better understanding of these changes in an individual's response to spaceflight can help to develop personalized countermeasure procedures that can optimize the safety and performance of each astronaut. This project aims to gather data to better understand omics changes seen after spaceflight and inform Turkish researchers working on gravitational physiology, aviation, and space medicine on best practices for astronaut care, as part of Türkiye’s rapidly developing national space program.
The Mapping Astronaut Meta-GenOmics: a Microbial Profiling Research (MAGOR) project will monitor the changes in astronauts' gut, urine, and oral microbiomes before, during, and after spaceflight. By identifying changes in the body’s bacterial, fungal, and viral cultures from saliva, urine, and fecal samples, this project will provide insight into how space conditions impact human microbiomes. Insights from the research could inform strategies to maintain astronaut health and could shed light into research to manage microbiome-related conditions on Earth.
An Evaluation of the Human Urinary Microbiome and Urinary Symptoms Throughout a Short-Duration Space-Flight [Microbiome in Space (Ax-1)] evaluates whether space alters the human urinary tract microbiome, or community of microorganisms, during the Axiom-1 (Ax-1) private astronaut mission (PAM). Urinary tract infections have previously affected astronauts, and microbiome alterations may increase the risk. Results from this investigation could support development of countermeasures for future spaceflight.